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When the data has a constant coefficient of variation, appropriately eighted least squares estimates of the 
parameters for competitive inhibition in both enzyme and binding experiments can be obtained algebraic- 
ally. The algorithms are presented and justified. 
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INTRODUCTION 

In the analysis of initial velocity data from experiments involving enzyme inhibition, 
the Dixon’ plot is widely used. As in other aspects of the analysis of enzyme and 
binding data, reciprocal transforms can be used in two contexts; they can assist 
exploratory data analysis, and can be used to estimate parameters. Few would argue 
against the use of transform methods as an aid to exploratory data analysis, but there 
is increasing consensus that parameter estimation should depend on an appropriately 
weighted nonlinear least squares fit of the data to the model. If the analysis goes 
beyond point estimation to confidence intervals and hypothesis testing, then most 
methods depend on the assumption of an underlying normal distribution of errors, 
and the estimation of the variance then rests on the residual error following least- 
squares estimation of the parameters. In models of enzyme inhibition, the parameters 
enter the model nonlinearly. The estimation of the parameters in nonlinear models is 
not, in general, possible algebraically; the exact answer can not be obtained in a finite 
number of calculations, and estimation therefore depends on iteration and approxi- 
mation. Commonly, the variance of the data is not constant. Small readings often 
have smaller variances than larger readings. Under such circumstances an appropriate 
assumption is often one of a constant coefficient of variation,2 implying that the ratio 
of the standard deviation to the predicted velocity is constant. 

Where the standard deviation depends on the predicted value, even linear regression 
models have the parameters entering the calculations nonlinearly, and again esti- 
mation must depend on iteration and approximation. A discussion of iterative tech- 
niques in parameter estimation often involves the Marquardt-Levenberg algorithm 
and the Cholesky decomposition of matrices. This is unfortunate because these topics 
lie outside the sphere of interest of many biologists. The iterative techniques require 
initial estimates of the parameters, and may fail to converge if these estimates are not 
close to the actual values. Because of their drawbacks, these techniques are better 
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avoided if there is a direct algebraic approach to the same answer. Where the data has 
a constant coefficient of variation, the models involved in competitive enzyme inhibition 
(and equivalently, competitive binding) permit an algebraic solution to the weighted 
least sqaures estimation of the parameters. The algorithms which follow are not an 
approximation and do not involve transformation of the data. The estimates obtained 
will be exactly those towards which the iterative techniques are supposed to converge. 

COMPETITIVE INHIBITION 

The model being considered is that describing initial velocity data from a simple 
enzymatic reaction in the presence of a competitive inhibitor. Using standard nomencla- 
ture (see, for instance Lehninger3), 

where [S] and [ I ]  are substrate and inhibitor concentrations, V is the predicted 
velocity of the reaction and the parameters to be estimated are maximum velocity 
(V,,,), substrate constant (Ks ) ,  and inhibitor constant (K,) .  The experimental data 
consists of n triplets (vJ,  s,, h,) j = 1,2, . . . , n from n incubations in which the jXh 
incubation has substrate concentration sJ and inhibitor concentration hJ and has an 
observed initial velocity u,. With st?ndard deviation proportional to the mean, the 
appropriate least squares estimates V,,, , K;, and I?, will be those which minimize the 
weighted sum of squares, R, defined 

Then under the assumption of constant coefficient of variation the values Fmax, kx and 
K, minimizing R are derived by the following algebraic algorithm. 

Algorithm 1 

Nine quantities A to I are calculated from the experimental data; 

A = cv,’, 

B = cv;/s,, 

C = Cv,’h,/sJ, 

D = CV:~S,’, 
E = Cv,?hJ/sj ,  

F = cv,Zhj/sj, 

= CvJ,  
= CvJIsJ, 

I = C V J l l J I S , .  
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ESTIMATES OF INHIBITOR CONSTANTS 

Then let 

J = 

L = 

M = 

N = 

A(DF - E’) - B(BF - C E )  + C(BE - CD), 

[G(DF - E 2 )  + H(CE - B F )  + Z(BE - CD)]/J ,  

[G(CE - B F )  + H(AF - C’) + Z(BC - A E ) ] / J ,  

[G(BE - CD) + H(BC - A E )  + Z(AD - B 2 ) ] / J ,  
in terms of which the required parameter estimates are, 

Vmax = 1/L, 
K> = MIL, 
K, = M / N .  
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RADIOTRACER DILUTION 

Radiotracer dilution represents a particular case of competitive inhibition in which 
K, = K,. It is perhaps more commonly employed in binding, rather than enzyme, 
experiments, but for simplicity we present the enzymatic equivalent. We equate hot 
(radiolabelled) substrate with s, and cold (unlabelled) with h,. Then vJ is the velocity 
of incorporation of the radiolabelled substrate. 

Algorithm 2 

Define the quantities A to Z as in the first algorithm. Then proceed, 

J = D ( A  + 2C + F )  - ( B  + E)’, 

L = [D(C + I) - H ( B  4 E ) ] / J ,  

M = [ H ( A  + 2C + F )  - (G + T)(B + E ) ] / J ,  
in terms of which the required estimates are p,’,,, = I/L and k3 = M / L  as previously. 

THEORY 

The weighted sum of squares 1 may be recast, 

and accordingly the problem may be rephased in terms of a multiple linear regression. 
In its more familiar context, multiple linear regression seeks to describe some vector 
of dependent variable readings, or ‘observations’ in terms of a linear combination of 
several explanatory variables. In the present context, the vector of ‘observations’ is 
replaced by a vector in which all the entries are unity. The explanatory variables are 
D ~ ,  vJ/sJ,  and v,hJ/s,, the vectors of which define a three-dimensional model space. As 
in any multiple linear regression, we seek the vector in model space which is, in a 
least-squares sense, closest to the vector of observations. In brief, the explanatory 
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variables vJ, vJ/sl and vJh,fs, are regressed on the unit vector. The coefficients associated 
with the three variables will then be the least squares estimates of 1 / V,,, , K,/ V,,, and 
K,/(K, V,,,) respectively. 

Readers with access to general purpose regression programs such as MINITAB4 or 
GLIM’ may wish to use these facilities rather than to program the algorithm as 
presented. In the following development we let L = l/V,,,, M = K,/V,,, and 
N = K,/(K, VmaX). Then using A to Zas defined earlier, the normal equations dS2/8L = 
0, dR/dM = 0 and dR/dlv = 0 may be written in matrix form, 

and the equations as presented in algorithm 1 amount to the use of Cramer’s rule (see, 
for instance, Noble6) to invert the matrix, J being its determinant. With the assump- 
tion that K, = K, in algorithm 2,  the objective function simplifies to 

and the problem remains one of multiple linear regression on the unit vector. With 
L and M as defined previously, the normal equations become, 

A + 2 C + F  B + E  ( B S E  D 
and as before, the solution uses Cramer’s rule with J being the determinant of the matrix. 

DISCUSSION 

Although these algorithms use the standard methods of linear algebra, they do not 
amount to the imposition of a linearizing transform. The objective function R 
minimized is precisely that which iterative methods minimize. The algorithms depend 
on the fortuitous circumstance that, in this particular nonlinear model, the nonlin- 
earities of the model and of the weighting essentially cancel out, leaving a problem 
which can be solved algebraically. Accordingly this communication does not propose 
any new or improved estimator. Both the estimates and their statistical properties will 
be identical to those arrived at by more cumbersome iterative algorithms. Only the 
method of arriving at  the estimates is different. The method is free of convergence 
problems, and does not require initial estimates. It offers, therefore, the statistical 
efficiency of the direct least squares methods together with the convenience of the 
transform methods. A constant coefficient of variation is often an appropriate 
assumption,’ but if some alternative weighting is imperative, then the algorithms 
above offer useful initial parameter estimates with which to begin any iterative search. 
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